Ab Initio MO and SD-CI Study of Ni(PH₃)₂(CO₂). Electron Correlation Effects on **Geometry, Binding Energy, and Electronic Structure**

Shigeyoshi Sakaki,*,^{1a} Nobuaki Koga,^{1b} and Keiji Morokuma^{1b}

Received November *21,* 1989

Ab initio Hartree-Fock, single-reference single-double configuration interaction (SD-CI) and multireference SD-CI calculations were carried out for $Ni(PH_3)_2(CO_2)$. Introduction of electron correlation lengthens the Ni-CO₂ coordinate bond distance of the η^2 -side-on complex and decreases the CO₂ binding energy. These correlation effects are opposite to those found in M(CO) (M = Ni, Pd, Pt), Ni(PH₃)₂(π ¹-N₂), and Ni(PH₃)₂(C₂H₄). The difference in correlation effects between them comes from their different feature of the HOMO. The electronic structure of $Ni(PH₃)₂(\eta^2-CO₂)$ is analyzed in detail at the Hartree-Fock and SD-CI levels

Introduction

Transition-metal-CO₂ complexes have recently drawn much attention, because coordination to transition-metal complexes is expected to activate an inert $CO₂$ molecule to undergo subsequent $CO₂$ fixation into organic substances.² In this regard, information concerning geometry, electronic structure, and reactivity of coordinated CO₂ molecule is indispensable. Several MO studies of transition-metal $CO₂$ complexes have been carried out,³⁻⁶ in an attempt to obtain the above-mentioned information. Unfortunately, however, those MO papers were based on the Hartree-Fock (HF) level, and very little has been reported beyond the HF level.'

Very recently, Sakaki et al. have carried out a single-double configuration interaction (SD–CI) study of $Ni(PH₃)₂(N₂)$ and have reported several interesting electron correlation effects on geometry, binding energy, and relative stability of two coordination modes $(\eta^1$ -end-on and η^2 -side-on).⁸ Such results of electron correlation effects indicate the necessity of reinvestigating a similar CO_2 complex, $Ni(PH_3)_{2}(CO_2)$, at the correlated level, which had been investigated previously with the ab initio MO method at the HF level.^{3a}

In this work, ab initio MO and either single-reference or multireference SD-CI calculations are carried out for Ni(P- H_3 , (CO_2) . The electronic structural data, such as coordinate bond nature and electron distribution, are discussed first with energy decomposition analysis at the HF level and then discussed at the correlated level. Electron correlation effects on geometry and binding energy are also investigated.

Computation Details

Basis Sets and Geometries. An ab initio MO and **SD-CI** calculation was carried out with the **MELD** program? while the energy decomposition analysis (EDA) study was performed with the **IMSPACK** program.I0 The MIDI-4 basis sets were used for C, O, and P atoms,¹¹ and the $(4s/2s)$

- (a) Kumamoto University. (b) Institute for Molecular Science.
- For example: (a) Collin, **J.** P.; Sauvage, J. P. Coord. Chem. Reu. **1989,** 93,245. (b) Behr, A. Angew. Chem., Int. Ed. Engl. 1988,27,245. (c) Braunstein, P.; Matt, D.; Nobel, D. Chem. Reo. **1988, 88,** 747. (d) Walther, D. Coord. Chem. Rev. **1987,** 89, 135.
- (a) Sakaki, S.; Kitaura, K.; Morokuma, K. Inorg. Chem. **1982,** *21,* 760. **(b)** Sakaki, **S.;** Dedieu, A. *J.* Organomet. Chem. *1986,314,* **C63.** (c) Sakaki, S.; Dedieu, A. Inorg. Chem. **1987,** 26, 3278. (d) Sakaki, *S.;* Aizawa, T.; Koga, N.; Morokuma, K.; Ohkubo, K. Inorg. Chem. **1989, 28,** 103.
-
-
- Mealli, C.; Hoffmann, R.; Stockis, A. *Inorg. Chem.* 1984, 23, 56.
Branchadell, V.; Dedieu, A. *Inorg. Chem.* 1987, 26, 3966.
Rosi, M.; Sgamellotti, A.; Tarantelli, F.; Floriani, C. *Inorg. Chem.* 1987,
26, 3805. (6)
- (a) The CO₂ binding energy of RhCl(AsH₃₎₄(η ¹-CO₂) was calculated at the MP2 level.^{3d} However, the details of electronic structure have not been investigated at the correlated level. (b) Dedieu, A,; Ingold, F. Angew. Chem., Int. Ed. Engl. **1989,** 28. 1694.
-
- Sakaki, S.; Ohkubo, K. *J.* Phys. Chem. **1989,** 93, 5655. Davidson. E. R.; McMurchie, L.; Elbert, *S.;* Langhoff, **S.** R.; Rawlings, D.; Feller, D. Program **MELD.** University of Washington, Seattle, WA; **IMS** computer center Library, No. 030.
- Morokuma. K.; Kato, S.; Kitaura, K.; Ohmine, I.; Sakai, *S.;* Obara, **S.** IMS computer center library, No. 0372.

set was employed for the H atom.¹² For Ni, Huzinaga's $(13s7p5d)$ primitive set, proposed for the Ni³D(d⁹s¹) state,¹¹ was augmented with a diffuse d primitive $(\zeta = 0.10)^{13}$ and three p primitives whose exponents were taken to be the same as the three most diffuse **s** primitives of Ni. The resultant (13s10p6d) primitive set was contracted to [5s4p3d], i.e., minimal for all core orbitals, double-{ for the 4s and 4p orbitals, and triple- ζ for the 3d orbital.

The geometry of $Ni(PH_3)_2(\eta^2$ -CO₂) was taken from an X-ray experimental work for $Ni(PCy_3)_2(\eta^2$ -CO₂),¹⁴ together with the experimental geometry of free PH₃.¹⁵ Electron correlation effects on the coordinate bond distances were investigated by moving CO₂ along the *z* axis with the other geometrical parameters fixed, as shown in Figure I. Correlation effects on the ligand distortion were examined by changing the OCO angle with the other part fixed.

The η^1 -C coordinated Ni(PH₃)₂(η^1 -CO₂) was also investigated in an attempt to compare the relative stabilities of the η^2 -side-on and η^1 -C coordination modes. The $Ni(PH₃)₂$ part of this complex was assumed to have the same structure as in $Ni(PH_3)_2(\eta^2-CO_2)$. The geometry of the CO₂ part was optimized to have $R(C-O) = 1.21$ Å and $\angle OCO =$ 152° at \vec{R} (Ni-C) = 1.97 Å with parabolic fitting of the total energy at the HF level,¹⁶ where rather small basis sets were used for Ni and P atoms; (3s2p5d/2s2p2d) and (3s3p/2s2p) sets were employed to represent valence orbitals of Nil7 and PI8 atoms, respectively, where the **[Ar]** core of Ni and the [Ne] core of P were replaced with effective core potentials.^{17,18} Then, the Ni-C distance was optimized with the better basis sets described above.

Energy Decomposition Analysis at the HF Level. The electronic structure of molecular complexes can be successfully discussed at the HF level with the energy decomposition analysis method proposed by Morokuma et al.¹⁹ In this analysis, the interaction energy (INT) is given as the stabilization energy of the complex relative to the distorted fragments, and the deformation energy (DEF) is defined as the destabilization energy to distort the $CO₂$ part to its deformed structure in the complex (the $Ni(PH₃)₂$ geometry is assumed to be fixed):

$$
INT = E_t[Ni(PH_3)_2(CO_2)] - E_t[Ni(PH_3)_2] - E_t(CO_2)_{dist}
$$
 (1)

$$
DEF = Et(CO2)dist - Et(CO2)opt
$$
 (2)

The sum of INT and DEF is BE, which corresponds to the negative binding energy (be)

$$
BE = -be = INT + DEF
$$
 (3)

INT is divided further into several chemically meaningful terms

$$
+ BCTPLX + R \qquad (4
$$

where ES is the electrostatic term arising from the Coulomb interaction

- **(1 1)** Huzinaga, **S.;** Andzelm, **J.;** Klobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, **H.** Gaussian Basis Sets *for* Molecular Calculations; Elsevier: Amsterdam, 1984.
- (12) Dunning, T. H.; Hay, P. **J.** Methods of Electronic Structure Theory; Schaefer, H. F., Ed.; Plenum: New York, 1977; p 1.
-

 $INT = ES + EX + FCTPLX$

- (13) This value was determined by even-tempered criterion.

(14) Aresta, M.; Nobile, C. F.; Albano, V. G.; Forni, E.; Manassero, M. J.
 Chem. Soc., Chem. Commun. **1975**, 636.

(15) Herzberg, G. Molecular Spectra and Mol
-
- \angle OCO = 151
- (17) Hay, P. J.; Wadt, W. R. *J. Chem.* Phys. **1985,82,** 270.
-
- (18) Wadt, W. R.; Hay, P. J. *J. Chem. Phys.* 1985, 82, 284.
(19) (a) Morokuma, K. *Acc. Chem. Res.* 1977, 10, 294. (b) Kitaura, K.;
Morokuma, K. *Int. J. Quantum Chem.* 1976, 10, 325. (c) Kitaura, K.; Sakaki, *S.;* Morokuma, K. Inorg. Chem. **1981,** 20, 2292.

Experi mental structure

Figure 1. Geometries (in Å and deg) adopted for $Ni(PH₃)₂(\eta^2$ -CO₂)¹⁴ and $Ni(PH_1)_2(\eta^1$ -CO₂).

and EX is the exchange repulsion due to the Pauli exclusion principle.
FCTPLX(B \rightarrow A) includes a charge transfer from the ligand (B) to the FUTPLX($B \rightarrow A$) includes a charge transfer from the ligand (B) to the metal fragment (A), a polarization of A, and their coupling term.
BCTPLX($A \rightarrow B$) includes a charge back-transfer from A to B, a polarization of B, and their coupling term. R is a higher order coupling term. From the definition, a negative value means stabilization in energy for all these terms.

Configuration Interaction Calculations. SD-CI calculations were carried out with a single HF configuration as the reference, whereas virtual orbitals were transformed to K orbitals²⁰ to improve the CI convergence and all core orbitals were excluded from the active space. In $Ni(PH₃)₂(\eta^2$ -CO₂), about 332 500 spin-adapted configurations were screened, based on the second-order Rayleigh–Schrödinger perturbation
theory (threshold = 5 × 10⁻⁵ hartree).²¹ Resultant 26 000–27 700 spin-adapted configurations, which include over 93% of the estimated single-double correlation energy, underwent a variational SD-Cl calculation. In the case of $Ni(PH₃)₂(\eta¹-CO₂)$, about 166 500 spin-adapted configurations were also subjected to the same perturbation selection and the resultant 17000-19900 spin-adapted configurations, which correspond to over 96% of the estimated single-double correlation energy, were used for the variational CI calculation. The coefficient of the reference configuration, C_0 , is about 0.92 in all the complexes examined.

Only for the most important η^2 -side-on complex, Ni(PH₃)₂(η^2 -CO₂), was a multireference (MR) SD-CI calculation carried out. In this calculation, the following three configurations were taken as references, ...(33a')²(34a')⁰, ...(33a')¹(34a')¹, and ...(33a')⁰(34a')², where 33a' is a bonding orbital between Ni d_r and CO₂ π^* and 34a' is its antibonding counterpart. The reason why these three were taken as references will be described later.

The variationally calculated limited SD-CI correlation energy, E_t (lim SD-CI), was corrected by estimating the correlation energy arising from the discarded configuration functions, to yield E_i (est SD-CI),^{22a} and then further correction was carried out by estimating contributions of higher order C1 expansions,²³ to give E_i (est full CI).^{22b}

MP2 Calculations. MP2 calculations²⁴ were also carried out with the Gaussian 82 program,²⁵ as a preliminary investigation of electron correlation effects, where all core orbitals were excluded from the active space. The binding energy (be) of $Ni(PH₃)₂(\eta^2-CO₂)$ was, however, calculated to be significantly negative (this means significant destabilization); for instance, be $= -29.7$ kcal/mol at the experimental geometry. Furthermore, the total energy monotonously decreases upon increasing the $Ni-CO₂$ distance. Nevertheless, the binding energy is still considerably negative in the region of usual coordinate bond distance; even when $CO₂$ is moved away from Ni by 0.5 Å, the binding energy is still -18.3 kcal/mol. These unsuccessful results are quite similar to the previous results for $Ni(PH_3)_2(N_2)$ and $Ni(PH_3)_2(C_2H_4)^8$ Thus, it seems to be a general trend that the MP2 method can not be applied to Ni(0) complexes.

- (20) Feller, D.; Davidson, E. R. *J. Chem. Phys.* **1981,** *84,* 3997.
- (21) Langhoff, S. R.; Davidson, E. R. *Int. J. Quantum Chem.* **1974**, 8, 61. (22) (a) $E_1(\text{est SD-CI}) = E_0 + [E_1(\text{lim SD-CI}) E_0](1 + E_{\text{diag}}/E_{\text{kept}})$, where E_0 is the total energy at the Hartree-Fock level and E_{diss} and E_{deph} are the SD correlation energy excluded and that included in the variational CI calculation, respectively. Both E_{diss} and $E_{\text{k$
- (23) Davidson, E. R.; Silver, D. W. *Chem. Phys. Lett.* **1977,** *52,* 403. (24) (a) Moller, C.; Plesset, M. *S. Phys. Rev.* **1934,** *46,* 618. (b) Pople, J. A.; Binkley, J. *S.;* Seeger, R. *Inr. J. Quantum Chem., Symp.* **1976,** *10,* 1. (c) Pople, J. A.; Krishnan, R.; Schlegel, H. **B.;** Binkley, J. *S. Int. J. Quantum. Chem.* **1978,** *14,* 545. (d) Krishnan, R.; Frisch, M. J.; Pople, J. A. *J. Chem. Phys.* **1980, 72,** 4244.
- (25) Binkely, J. *S.;* Frisch, M.; Reghavachari, **K.;** DeFrees, D.; Schlegel. H. B.; Whiteside, R.; Fluder, E.; Seeger, R.; Pople, J. A. *Gaussian 82*;
Carnegie-Mellon Quantum Chemistry Archive; Carnegie-Mellon
University: Pittsburgh, PA, 1983.

Table I. Binding Energy and Coefficients of Some Leading Configurations

		$Ni(PH_3)$, $(\eta^2$ -CO ₂) ^a	
	SR. SD-CI	МR $SD-CIc$	character of configuration
be, ^b kcal/mol	7.2	6.6	
C_0 C_{1}	0.915c 0.087	0.909c 0.121	$(Ni d_{-} + CO, \pi^{*})^{2} \rightarrow$
\mathcal{C}_2	0.073	0.081	$(CO, \pi^* - Ni dz)^2$ (Ni d _r + CO ₂ π [*]) ¹ \rightarrow $(CO, \pi^* - Ni d)^{1}$
$\frac{C_3}{C_5}$	0.052	0.053	CO ₂ $(n\pi)^2 \rightarrow (\pi^*)^2$
	0.036	0.038	(Ni d. + CO, π^*). Ni 3d _{xy} \rightarrow (CO ₂ π [*] – Ni d _r), Ni $4d_{xy}$
C_{14}	0.018	0.019	Ni $3d_{xy}$, $3d_{yz} \rightarrow$ Ni $4d_{xy}$, $4d_{yz}$
		$Ni(PH_3)_{2}(\eta^1-CO_2)^{d}$	
	SR SD-CI		character of configuration
be, ^b kcal/mol	-0.4		
$\frac{C_0}{C_1}$	0.915c 0.092		(Ni d _a + CO ₂ π [*]) ² → $(CO_2 \pi^* - Ni d_e)^2$

^aThe experimental geometry. $E_t(HF) = -2376.6973$ hartrees, E_t -(lim SD-CI) = -2377.2569 hartrees, E_i (est full CI) = -2377.4439 hartrees in the SR-SD-CI, and E_t (lim SD-CI) = -2377.2632 hartrees, E_i (est full CI) = -2377.4426 hartrees in the MR-SD-CI. ^b The binding energy at the estimated full CI level (kcal/mol). Coefficients underlined are for reference configurations. $dR(Ni-C) = 1.87 \text{ Å}$; see Figure 1 for the other geometrical parameters (this structure is very close to the optimized one obtained by parabolic fitting of total energies). $E_t(HF) = -2376.6602$ hartree, $E_t(\text{lim SD-CI}) = -2377.2593$ hartree, and $E_i(\text{est full CI}) = -2377.4312$ hartrees. ϵ_{π_i} is on the plane of Ni-CO₂ and π_{\perp} is perpendicular to the plane. No marks mean the in-plane orbital.

Results and Discussion

Electron Correlation Effects on Geometry and Binding Energy. First, we shall compare MR SD-CI results with single reference (SR) SD–CI results for $Ni(PH₃)₂(\eta^2$ -CO₂) at the experimental structure. **In** the SR SD-CI calculation, the second and third leading electron configurations, $...(33a')⁰(34a')²$ and ...($33a$ ['])¹($34a$ ['])¹, in addition to the reference, ...($33a$ ['])², have rather large expansion coefficients, as shown in Table I. Therefore, these three configurations were taken as references in the MR SD-CI calculation. Compared to the SR **SD-CI** calculation, the MR SD-CI calculation yields, as expected, a slightly smaller C_0 but slightly larger C_1 and C_2 values. The binding energy²⁶ estimated with the MR SD-CI method is 6.6 kcal/mol, slightly smaller than that found with the SR SD-CI method **(7.2** kcal/mol), as shown in Table I. These values of binding energy seem to be rather small for a normal-coordinate bond, which will be discussed later in

^{(26) (}a) The binding energy was estimated as the energy relative to the structure where the Ni(PH₃)₂-CO₂ separation is 50 Å with $R(C-O) = 1.16$ Å, $\angle OCO = 180^{\circ}$, and $\angle PNiP = 120^{\circ}$. (b) At infinite separation, the Ni(PH₃)₂ fragment would have a linear structure ($\angle P$ NiP = 180°). The binding energy should be estimated as the difference from such a linear structure. However, it is not easy to calculate values for linear Ni(PH₃)₂, because low-lying states such as d⁹s¹ must be taken into
consideration. Even when a MR SD–CI calculation is applied, it is difficult to select reference configurations of the linear Ni $(\hat{PH}_1)_2$ consistent with Ni(PH₃)₂(CO₂). Thus, the binding energy was estimated as described in ref 26a. With this regard, the binding energy is meaningful in a comparison among $Ni(\overrightarrow{PH}_3)_2(\eta^2-CO_2)$, $Ni(\overrightarrow{PH}_3)_2(\eta^1-CO_2)$ CO_2), and $Ni(PH_3)_2(C_2H_4)$.

Figure 2. Relative energies^a as functions of the Ni-CO₂ distance change, $\Delta R(Ni-CO_2)$,^b and the OCO angle for Ni(PH₃)₂(η^2 -CO₂). (a) The energy change ΔE is relative to structure at 50 Å separation between Ni and CO₂. (b) $\Delta R(Ni-CO_2)$ is the deviation of the CO₂ position from the experimental structure (see Figure I).

Figure 3. Relative energies as function **of** the Ni-C distance for Ni- $(PH_3)_2(\eta^1$ -CO₂).

detail. However, differences in the binding energy as well as the CI expansion coefficients are small between SR **SD-CI** and **MR** SD-CI calculations, indicating that this kind of Ni(0) complex can be investigated, at least semiquantitatively, with the SR SD-CI method.

Now, electron correlation effects on the Ni -CO₂ distance were examined in $Ni(PH₃)₂(\eta^2$ -CO₂) by moving the CO₂ part away from the Ni atom along the *z* axis, with the other geometrical parameters fixed (see Figure 1). **As** shown in Table **I1** and Figure 2, both HF and CI calculations give the Ni - $CO₂$ distance in good agreement with the experimental result.¹⁴ It is noted that electron correlation effects lengthen the Ni - $CO₂$ distance by about 0.07 **A** and decrease the binding energy significantly by about 10 kcal/mol. Although an analogous increase in the $Ni-C₂H₄$ distance upon introducing electron correlation effects has been found in our previous SD-CI study of a similar compound, $Ni(PH₃)₂$ -

Table 11. Electron Correlation Effects on Geometry and Binding Energy'

compd	method	dev ^b from expt for $R(Ni$ –CO ₂), \AA	binding energy, ^c kcal/mol
$Ni(PH_1), (n^2$ -CO ₂)	НF	-0.03	17
$(20CO = 133^{\circ})$	est SD-CI	0	7
	est full CI	0.04	8
		dev ^b from expt for	binding energy,
compd	method	\angle OCO, ^d deg	kcal/mol
$Ni(PH_3)_2(\eta^2$ -CO ₂)	НF	138°	17
	est SD-CI	143°	12
	est full CI	143°	12
		dev ^b from expt for	binding energy,
compd	method	$R(Ni-C)^*$ Å	kcal/mol
$Ni(PH_3)_{2}(\eta^1$ -CO ₂)	HF	1.90	-7
	est SD-CI	1.90	-3
	est full CI	1.90	-0.4
			binding
		dev ^b from expt for	energy,
compd	method	$R(Ni-C,H_4)/A$	kcal/mol
$Ni(PH2),(C2H4)g$	HF	1.81	29
	est SD-CI	1.85	33
	est full CI	1.89	35

"Values listed here are estimated from parabolic fitting of total energies. The total energy (hartrees) near the minimum are as follows. For $Ni(PH₃)₂(\eta^2-CO₂)$ with the experimental structure, see footnote *a* of Table I. For $Ni(PH₃)₂(\eta^2$ -CO₂), which has $\angle OCO = 143^\circ$, $E_t(HF)$ $= -2376.6974$, E_t (lim SD-CI) = -2377.2654, E_t (est full CI) = -2377.4504 . For $Ni(PH₃)₂(\eta¹-CO₂)$, which has $R(Ni-C) = 1.87$ Å, see footnote *d* of Table I. For Ni(PH₃)₂(C₂H₄), which has $R(Ni-C_2H_4) = 1.90$ Å and CH₂ bending = 26°, $E_1(HF) = -2267.3074$, E_1 - $(\lim_{1 \text{ cm}} \text{SD}-\text{CI}) = -2267.7888$, and $E_i(\text{est full CI}) = -2267.9432$. ${}^b\text{CO}_2$ is moved along the *z* axis with all the other geometrical parameters fixed (see Figure 1). **A** negative value means shortening of the Ni-C-**O2** distance compared with the experimental structure and vice versa. 'Defined as the energy at infinite (50 **A)** separation minus the energy of the complex at the calculated minimum. "Only the OCO angle is altered, while the experimental $Ni-CO₂$ distance and the other parameters are fixed. ϵCO_2 is moved along the *z* axis with the rest of the geometry fixed. *The distance between the Ni atom and the center of* the $C=C$ bond. s Reference 8.

 (C_2H_4) ,⁸ the binding energy of C_2H_4 coordination increases with correlation effects. In $Ni(PH_3)_2(\eta^1-CO_2)$, the Ni-C distance changes little, and the binding energy increases with correlation

effects, as shown by Figure 3. The differences among η^2 -CO₂, η^1 -CO₂, and C₂H₄ complexes are considered to be related to their differences in electronic structure, as will be discussed later.

A highly distorted ligand is one of the characteristic features of low-valent non-Werner-type transition-metal complexes. Thus, electron correlation effects on the ligand distortion are worthy of examination. HF calculations result in the optimized OCO angle of 138°, slightly larger than the experimental value,¹⁴ but correlation effects further increase the angle to 143° (see Table **I1** and Figure **2).**

The binding energy of the n^2 -side-on mode is calculated to be 12 kcal/mol at the CI level for $\angle OCO = 143^{\circ}.^{26}$ This value is reduced to about **5** kcal/mol after the correction for the basis set superposition error (BSSE) by the Boys method.^{27a} One should note, however, that this method usually overcorrects the error.^{27b} A rather small binding energy suggests that CO₂ binding in $Ni(PH₃)(\eta^2$ -CO₂) is weak. The binding energy of the η^1 -C mode is estimated to be **-0.4** kcal/mol (and **-5.7** kcal/mol after BSSE correction) at the CI level. This repulsive interaction is consistent with the fact that the η^1 -C mode has not been found experimentally in $Ni(PR₃)(CO₂)$.

Electronic Structure at the Hartree-Fock (HF) Level. First, the difference density at the HF level is analyzed with the **EDA** method of Morokuma et al.,¹⁹ in order to clarify the nature of each interaction term such as EX, FCTPLX, BCTPLX, and *R.* The difference density maps of $Ni(PH₃)₂(\eta^2-CO₂)$ are given in Figure 4.28 The EX term decreases the electron density in the region between Ni and $CO₂$, as expected for the exchange repulsion of electron clouds between $Ni(PH_3)_2$ and CO_2 . The BCTPLX term decreases the electron density in the Ni d_{π} orbital but increases it in the $CO₂$ part, in particular on the O^t atom (the terminal 0 atom is denoted as *0'* and the coordinate 0 atom as *of).* **A** significant accumulation of electron density **on** the *0'* atom cannot be explained in terms of simple charge transfer from the Ni d_r to the $CO₂ \pi$ ^{*} orbital, because this simple charge-transfer interaction should increase the electron density more on the C atom than on the O atoms.²⁹ As discussed in a preceding section, the BCTPLX term includes some polarization in the $CO₂$ part. As shown in Chart I,³⁰ the unoccupied orbital ϕ_4 mainly consists of the $CO_2 \pi^*$ orbital, into which the Ni $d\pi$ orbital mixes in an antibonding way. The $CO_2 \pi$ and nonbonding $\pi(n\pi)$ orbitals furthermore exhibit antibonding mixing with the Ni $d\pi$ orbital.³¹ As a result, the C p_{π} and O^c p_{π} orbitals contribute to this molecular orbital to a greater extent than the O^t p_r orbital. This means that in the occupied space the electron density accumulates more on

(3 I) Inagaki, **S.:** Fujimoto. H.; Fukui, **K.** *J. Am. Chem.* **Soc.** 1976,98, **4054.**

Figure 4. Total and EDA component difference density maps $\Delta \rho$ = $\rho[\text{Ni}(PH_3)_2(\eta^2\text{-}CO_2)] - \rho[\text{Ni}(PH_3)_2] - \rho[\text{CO}_2]_{\text{dist}}$. $\Delta \rho = \pm 0.05, \pm 0.01,$ **f0.005, fO.OO1, f0.0005,** and 0.0. Solid, dashed, and dashed-dotted lines show increases, decreases, and no change, respectively.

the *0'* atom than **on** the C atom.

The FCTPLX term exhibits somewhat complicated features, as shown in Figure 4C. Considering that the FCTPLX term includes a charge transfer from $CO₂$ to $Ni(PH₃)₂$ and a polarization of the $Ni(PH₃)₂$ part, one might draw a coherent picture for this term. The charge-transfer interaction occurs from the $CO₂ \pi$ and $n\pi$ orbitals to the Ni(PH₃)₂ part, which moves the electron density from C and *0"* atoms to the region between the Ni and O^c atoms. The polarization of the $Ni(PH₃)₂$ part also takes place, in which electrons of the $Ni(PH₃)₂$ part are drawn toward the positively charged C atom and repelled from the negatively charged O^c atom.

⁽²⁷⁾ (a) **Boys, S.** F.; Bemardi, F. *Mol. Phys.* 1970,19,553. (b) For instance, Collins, J. **R.;** Gallup, **G. A.** *Chem. Phys. Leu.* 1986, *123,* **56.**

in our previous paper, we avoid the repetition here and take notice of only a few important results found in the present study.

⁽²⁹⁾ Note that the π^* orbital of CO₂ has a large C p_r and a small O p_r. (30) In this chart, only orbital mixing in the virtual space is illustrated.³¹ The

electron distribution is given as a reverse of the virtual space orbital contribution.

Figure 5. Total, BCTPLX, and *R* component difference density maps for $Ni(PH₃)₂(\pi¹-CO₂)$ and $Ni(PH₃)₂(C₂H₄)$. See Figure 4.

The difference density map of the *R* term, which is a higher order term, exhibits several interesting results. (1) The electron density decreases in the region of the Ni, in particular the Ni $d\pi$ orbital, and increases in the region of the $CO₂$ part, which resembles very much the difference density map of the BCTPLX term. **(2)** At the same time, the electron density increases in the region of the PH_3 ligands, which suggests that some polarization occurs in the $Ni(PH₃)₂$ part. Very similar features are found in the difference density maps of $Ni(PH₃)₂(\eta¹-CO₂)$ and Ni(P-H3),(C2H4), as shown in Figure *5* (compare the BCTPLX and *R* difference density maps between Figures **4** and *5).* Although the character of the *R* term is in general ambiguous, these features strongly suggest that in these complexes the *R* term mainly consists of a coupling between charge back-transfer from Ni $d\pi$ to the L π^* orbital (L = CO₂, C₂H₄) and the Ni(PH₃)₂ polarization.

Now, let us discuss the nature of the coordinate bond from an energetic viewpoint. **In** all of these complexes, the BCTPLX stabilization is much larger than the FCTPLX stabilization, as compared in Table **111.** This means that the back-donating interaction contributes to the coordinate bond more than the donating interaction. Ni(PH₃)₂(η^2 -CO₂) exhibits several characteristic differences from a similar η^2 -coordinated complex, $Ni(PH₃)₂(C₂H₄)$. (1) The BCTPLX and *R* stabilization of Ni- $(PH_3)_2(\eta^2$ -CO₂) is remarkably large, which comes from the fact that the π^* orbital of the distorted CO_2 ligand lies much lower in energy than the π^* orbital of the distorted C₂H₄ ligand.³² (2) The FCTPLX term yields a larger stabilization in Ni(PH₃)₂- $(\eta^2$ -CO₂) than in Ni(PH₃)₂(C₂H₄), probably owing to the presence of the n π orbital of CO₂³³ in addition to the π orbital. (3) The ES stabilization is smaller in $Ni(PH_3)_2(\eta^2-CO_2)$ than in Ni(P- H_3)₂(C₂H₄), which is easily interpreted in terms of the Coulomb interaction of these complexes; the $Ni⁵⁺-O⁵⁻$ Coulomb attraction is weakened by the Ni^{δ^+ -C^{δ^+} Coulomb repulsion in the η^2 -side-on} $CO₂$ complex, while in the $C₂H₄$ complex both $C⁴$ atoms can yield a Coulomb attraction with the Ni⁶⁺ atom. (4) The DEF destabilization is larger in Ni(PH₃)₂(η ²-CO₂) than in Ni(PH₃)₂(C₂H₄), probably because the weak coordinate bond of CO₂ needs sufficient

Table 111. Energy Decomposition Analysis **of** the Interaction between $Ni(PH₃)₂$ and L (L = η^2 -CO₂, η^1 -CO₂, C₂H₄) (in kcal/mol)

	$Ni(PH_1)_{2}$ $(\eta^2$ -CO ₂) ^a	$Ni(PH_1)_{2}$ $(\eta^1$ -CO ₂) ^b	Ni(PH ₂) ₂ $(C_2H_4)^c$
BЕ	-16.2	7.9	-26.3
DEF	45.4	17.9	17.8
INT	-61.7	-10.2	-44.1
ES	-83.5	-31.6	-121.3
EX	146.3	65.2	147.6
FCTPLX	-21.7	-6.1	-8.5
BCTPLX	-76.7	-28.1	-50.7
R	-26.1	-9.6	-11.2

"The experimental structure.¹⁴ b The structure is given in Figure 1. $^cR(Ni-C_2H_4) = 1.9$ Å, the optimized distance at the estimated full CI level.

stabilization from π -back-bonding (note the CO₂ distortion lowers the *n** orbital energy, which favors the back-bonding). **In** other words, C_2H_4 does not need to cause a large distortion, because it has enough ability to coordinate to $Ni(0)$ without a large distortion.

 $Ni(PH₃)₂(\eta^2$ -CO₂) also differs significantly from Ni(PH₃)₂- $(\eta^1$ -CO₂). The latter receives smaller ES and BCTPLX stabilization because this mode suffers from the $Ni^{i+}-C^{i+}$ Coulomb repulsion and because the HOMO of $Ni(PH₃)₂$ is not the do Ization because this mode suffers from the Ni^{o+}-C^{o+} Coulomb
repulsion and because the HOMO of Ni(PH₃)₂ is not the d σ
orbital but the d π orbital (note the Ni d_{σ} \rightarrow CO₂ π ^{*} charge-
transfer intera small BCTPLX stabilization would correspond to the small DEF destabilization. These small ES and BCTPLX stabilizations can not overwhelm the small EX repulsion and small DEF destabilization, and therefore, this mode is unstable in $CO₂$ coordination to $Ni(PH₃)₂$.

In conclusion, the electronic structure of $Ni(PH₃)₂L$ (L = η^2 -side-on CO₂, η^1 -CO₂, C₂H₄) is characterized by the strong back-donating interaction from the Ni d to the L π^* , coupled with polarizations of the L and $Ni(PH₃)₂$ parts.

Electronic Structure at the *CI* **Level.** Now, we are in a position to discuss the electronic structure at the SD-CI level. Several important configurations are listed with their **CI** expansion coefficients in Table I. The largest excited contribution comes important configurations are listed with their CI expansion
coefficients in Table I. The largest excited contribution comes
from either (Ni d_r + L π^*)² → (L π^* – Ni d_r)² in the η^2 -side-on coefficients in Table 1. The largest excited contribution comes
from either (Ni d_r + L π^*)² \rightarrow (L π^* – Ni d_r)² in the η ²-side-on
CO₂ and C₂H₄ complexes or (Ni d_{*r*} + L π^*)² \rightarrow (L π

⁽³²⁾ The π^* orbital energy is 3.39 eV in the distorted C_2H_4 and 0.13 eV in the distorted CO₂, where the distorted structures were taken as in Ni(PH₃)₂(η ²-CO₂) and Ni(PH₃)₂(C₂H₄).

⁽³³⁾ The n π orbital with the Ni-CO₂ plane lies at -13.98 eV and that perpendicular to this plane lies at -14.3 eV.

Figure 6. Contour maps of several important natural orbitals for $\Delta \rho$ = ± 0.2 , ± 0.1 , ± 0.05 , ± 0.02 , and ± 0.01 .

excited configuration in the η^2 -side-on complex or the Ni 3d \rightarrow 4d excited configuration in the η ¹-C complex.

Occupation numbers of several important natural orbitals are compared for the $CO₂$ complex and the infinitely (50 Å) separated structure in Table IV. Upon η^2 -side-on CO₂ complexation, occupation numbers of natural orbitals change little in the a" representation but considerably in the a' representation. This strongly suggests that the correlation of electrons in the a" MO's is essentially intrafragmental, whereas the correlation of electrons in the a' MO's is directly related to the η^2 -side-on CO₂ coordinate bond. The occupation number of the 33a' natural orbital decreases remarkably and that of the 34a' orbital increases significantly **upon** n^2 -side-on CO₂ coordination. These two orbitals, pictured in Figure 6, apparently include a bonding overlap between Ni d π and CO₂ π^* orbitals and its antibonding counterpart, respectively. In the η^1 -C complex, the occupation number of the 19a, natural orbital decreases but that of the 20a₁ natural orbital increases signficantly upon CO_2 coordination. These orbitals are (Ni $d_{\sigma} + CO_2 \pi^*$) and ($CO_2 \pi^* - Ni d_{\sigma}$), respectively, as clearly shown in Figure **68.** From all these results about CI expansion coefficients and occupation numbers of natural orbitals, π -type back-bonding in $Ni(\overline{PH}_3)_2(\eta^2\text{-}CO_2)$ or σ -type back-bonding in $Ni(\overline{PH}_3)_2(\eta^1\text{-}CO_2)$ cannot be well described at the HF level but can be improved by introduction of electron correlation effects.

It is worth examining the electron distribution at the CI level. The difference density map of $Ni(PH₃)₂(\eta^2-CO₂)$ at the CI level is shown in Figure 7A. This difference density map is essentially

Table IV. Occupation Numbers for Several Important Natural **Orbitals**

	(A) Ni(PH ₃) ₂ (η ² -CO ₂)				
orbital	exptl $R(Ni-C)$, \AA	$R(Ni-C) = 50 \text{ Å}^b$			
32a'	1.981 (CO ₂ π_1 , n π_1^c)	1.973 ($CO2$ n π , γ)			
10a''	1.976 (CO ₂ $n\pi_1$)	1.977 (CO ₂ $n\pi_{\text{H}}$)			
33a'	1.946 (Ni d _r + $CO_2 \pi$ [*])	1.982 (Ni d _r)			
34a'	0.061 $(CO_2 \pi^* - Ni d_{\pi})$	0.038 (CO ₂ π^* _i)			
11a''	0.031 (CO ₂ π^* ₁)	0.031 ($CO_2 \pi^*$)			
35a′	0.018 $(CO_2 \pi^*$	$0.017~({\rm CO}_{2}~{\pi^{*}}_{1})$			
12a''	0.016 (Ni $4d_{xy}$)	0.020 (Ni $4d_{xy}$)			
	(B) Ni(PH ₃) ₂ (η ¹ -CO ₂)				
orbital	$R(Ni-C) = 1.90 \text{ Å}$	$R(Ni-C) = 50 \text{ Å}$			
18a ₁	1.983 (CO ₂ π ₁)	1.978 (CO ₂ π ₁)			
6b ₂	1.981 ($CO_2 \pi$ ₁)	1.981 $(CO_2 \pi_1)$			
14 _b	1.978 ($CO2 n\pi$ ₁)	1.974 (CO ₂ $n\pi_1$)			
4a ₂	1.976 ($CO2 n\pi_1$)	1.976 (CO ₂ $n\pi_{\bar{i}}$)			
$19a_1$	1.954 (Ni d _{<i>s</i>} + CO ₂ π [*])	1.977 (Ni d _a)			
20a.	0.056 (CO ₂ π [*] – Ni d _a)	0.035 (CO ₂ π^* _{ii})			
$5a_2$	0.017 (Ni $4d_{xy}$)	0.020 (Ni $4d_{xy}$)			
8ხ,	0.015 (Ni $4d_{\nu}$)	0.018 (Ni $4d_{yz}$)			

^{*a*} The experimental structure (see Figure 1). ^{*b*} The Ni-CO₂ distance is lengthened by 50 **A** with all the other geometrical parameters fixed. CSee footnote **e** of Table I.

(A) Δ **(Complex -** ∞) on CI level **Ni** $(H_3)_2(\eta^2-CO_2)$

 $(B) \triangle (CI - HF)$

(C) Ni(PH₃)₂(T¹-CO₂) Δ(CI - HF) (D) Ni(PH₃)₂(C₂H₄) Δ(CI - HF)

Figure 7. CI difference maps $(\Delta \rho(CI))$ for the η^2 -CO₂ complex, and the difference density between CI and HF levels $(\Delta(CI-HF))$ for various complexes. $\Delta \rho(CI) = \rho(\text{complex}) - \rho(50 \text{ Å separated})$ at the CI level. Δ (C1-HF) = ρ_{CI} - ρ_{HF} . See Figure 4 for values of contours.

the same as that at the HF level (Figure 4A). Thus, the qualitative feature of the $CO₂$ coordinate bond can be described at the HF level. Of course, correlation effects have a nonnegligible influence on the electron distribution. As shown by a difference in the density between CI and HF levels (Figure **7B),** electron correlation effects decrease the electron density in the region between the Ni and C atoms and in the region near the 0 atoms, but increase it in the regions near the C atom and Ni d_{π} orbital. Of these density changes, the change found in the *C02* part is considered to come from the $CO₂$ intrafragmental electron correlation effects, because the CO_2 n $\pi \rightarrow \pi^*$ excited configuration decreases electron density on the \overline{O} atoms but increases it on the C atom. However, the density decrease found in the region between the Ni and C

⁽³⁴⁾ $a + b$ and $a - b$ mean the bonding and antibonding overlaps, respectively, between a and b orbitals, where the contribution of b is smaller than that **of** a.

atoms seems to result from the correlation effects on the Ni - $CO₂$ interaction. At the HF level, the density is increased in this region mainly by the back-bonding interaction (see Figure 4D). In other words, the back-bonding interaction increases the electron density between Ni and C atoms too much at the HF level, and correlation effects correct such an overestimated increase in the electron density. Essentially the same feature is found in $Ni(PH₃)(n¹-CO₂)$ and $Ni(PH₃)(C₂H₄)$; the difference density maps of Δ (CI-HF). in Figure **7C,D,** show that electron accumulation at the HF level is decreased by correlation effects (see Figure 5 for the total difference density at the HF level).

In conclusion, correlation effects improve the description of the back-donating interaction in these complexes.

Understanding of Electron Correlation Effects on the Geometry and Binding Energy. There have been found two kinds of electron correlation effects on the coordinate bond distance; in one, the coordinate bond distance shortens upon introducing correlation, as exemplified by $M(CO)$, $M(CO)_4$, $(M = Ni, Pd, or Pt)$,³⁵ and $Ni(PH₃)₂(\eta¹-N₂)$.⁸ In the other, the coordinate bond distance lengthens upon introducing correlation in $Ni(PH₃)₂(C₂H₄)⁸$ and $Ni(PH₃), (\eta^2$ -CO₂). In organic compounds, the bond distance lengthens, in general, upon introducing electron correlation, which is understood by considering that excitations to antibonding orbitals contribute to the correlated wave function. In this regard, bond lengthening by electron correlation seems reasonable. In the case of Ni(PH₃)₂(η ¹-N₂), however, bond shortening has been found,⁸ as described above, where the excited configuration to an antibonding $(N_2 \pi^* - N_1 d_{\pi})$ is the major contributor to the correlated wave function. **A** critical difference between the two cases is found in the occupied levels. In $Ni(PH₃)₂(\eta¹-N₂)$, the HOMO, which dominantly contributes to excited configurations, is nearly nonbonding, because three-orbital mixing of metal $d\pi$, ligand π , and π^* orbitals occurs.^{8,36} On the other hand, the HOMO of Ni- $(PH_3)_2(\eta^2$ -CO₂) and Ni $(PH_3)_2(C_2H_4)$ is strongly bonding between metal and ligand,37 because the above-mentioned orbital mixing does not occur, owing to different symmetries of metal $d\pi$ and ligand π orbitals. From these results, electron correlation effects on the bond distance in the transition-metal complexes examined here seem to depend on the nature of the HOMO. In general, correlation effects would be expected to strengthen the metalligand interaction by incorporating the dispersion interaction, which would shorten the coordinate bond distance. When the HOMO is nearly nonbonding, this dispersion picture prevails, and the metal-ligand distance shortens by electron correlation. When the HOMO is strongly bonding, however, electron correlation reduces the bonding population and lengthens the coordinate bond distance. Thus, a balance of two different correlation effects on the bond length should be dependent on the nature of the HOMO.

The binding energy is expected to increase upon introducing electron correlation, as has been shown for $M(CO)$, $M(CO)₄$ (M = Ni, Pd, Pt),³⁵ Ni(PH₃)₂(η ¹-N₂),⁸ and Ni(PH₃)₂(C₂H₄).⁸ However, the binding energy of $Ni(PH_3)_2(\eta^2$ -CO₂) decreases upon introducing correlation effects, against the above-mentioned expectation. To clarify the reason, we compare two strong complexes: $Ni(PH₃)₂(\eta^2$ -CO₂) and $Ni(PH₃)₂(C₂H₄)$ (see Table II). As shown in Table I, the $(Ni d_x + CO_2 \pi^*) \rightarrow (CO_2 \pi^* - Ni d_x)$ excited configuration contributes significantly to the correlated wave function in $Ni(PH_3)_2(\eta^2-CO_2)$. A similar (Ni $d_{\pi} + C_2H_4$ wave function in Ni(PH₃)₂(η ²-CO₂). A similar (Ni d_r + C₂H₄
 π ^{*}) \rightarrow (C₂H₄ π ^{*} – Ni d_r) excitation is important in Ni(PH₃)₂⁻ (C_2H_4) .⁸ Therefore, the effect of interfragmental correlation on the M-L bond energy should be in the first approximation similar in both cases. The $Ni(PH₃)₂$ intrafragmental correlation would be similar as well. Thus, it **is** suspected that the major difference between the two complexes may come from the intrafragmental

correlation of CO_2 and C_2H_4 , both of which have received a substantial back-donation of electrons from the metal, as was shown and discussed with Table **111.** As a model of the backdonated ligand, the correlation energies of CO_2^- and $C_2H_4^-$ are calculated, and compared with those of *C02* and C2H4. The SD-CI correlation energies (hartrees unit, after the Davidson correction) are 0.3392 for $CO₂$, 0.3136 for $CO₂$, 0.2113 for $C₂H₄$, and 0.2006 for C_2H_4 . The correlation energy is lower for the anions than for the corresponding neutrals, and the decrease is ania 0.2006 for C₂H₄. The corresponding neutrals, and the decrease is
larger for CO₂ - CO₂ than for C₂H₄ - C₂H₄. In CO₂ the
larger for CO₂ - C₂ then for C₂H₄. The C₂ the control which amons than for the corresponding heutrais, and the decrease is
larger for $CO_2 \rightarrow CO_2^-$ than for $C_2H_4 \rightarrow C_2H_4^-$. In CO_2 the
correlation energy mainly comes from $n \rightarrow \pi^+$ excitation, which is larger in magnitude and whose loss therefore causes a larger decrease than in C_2H_4 where the correlation mainly comes from $\pi \rightarrow \pi^*$ excitation. Furthermore, Table III shows that the CO₂ complex has a greater back-donation contribution than the C_2H_4 complex. Thus, the correlation energy is lost in n^2 -side-on CO, coordination, resulting in net weakening of the M-L bond. In C2H4, presumably, the **loss** is more than compensated for by a gain of dispersion energy, an interfragmental correlation energy. $Ni(PH₃)(n¹-CO₂)$ is intrinsically a very weak complex, as shown in Table Ill, and the correlation energy should be mainly dispersion type, which should increase the binding energy. 38

Concluding Remarks

In this theoretical work, ab initio MO, SR SD-CI, and MR SD-CI calculations were carried out for $Ni(PH₃)₂(\eta^2-CO₂)$, and several interesting correlation effects on CO₂ coordination were obtained. The most important excited configuration is the (Ni deveral interesting correlation effects on CO_2 coordination were
obtained. The most important excited configuration is the (Ni
 $d_x + CO_2 \pi^* \rightarrow (CO_2 \pi^* - Ni d_x)$ in the n^2 -side-on CO₂ complex obtained. The most important excited configuration is the (Ni
 $d_x + CO_2 \pi^* \rightarrow (CO_2 \pi^* - Nd_*)$ in the η^2 -side-on CO_2 complex

and (Ni $d_x + CO_2 \pi^* \rightarrow (CO_2 \pi^* - Nd_*)$) in the η^1 -CO₂ complex. This means the HF description of back-bonding is not good enough, and introduction of correlation effects improves the description.

The Ni-CO, distance is optimized at HF and SR **SD-CI** levels. Although both optimized values are in good agreement with the experimental distance, correlation effects lengthen the distance by ca. 0.07 **A.** This result is opposite to the correlation effects on the coordinate bond distance previously found in M(C0) (M on the coordinate bond distance previously found in M(CO) (M

= Ni, Pd, Pt)³⁵ and Ni(PH₃)₂(η^1 -N₂).⁸ The bond lengthening is

interpreted in terms of the (Ni d_r + CO₂ π^*) \rightarrow (CO₂ π^*) \rightarrow Ni
 d,) excitation. Correlation effects on CO, binding energy **is** also against to our expectation; although the binding energy of coordination is expected to increase by correlation effects through incorporating dispersion interaction, binding energy between η^2 -side-on CO₂ and Ni(PH₃)₂ is decreased by introducing correlation effects.

From the above results, we can obtain some qualitative prediction of the electron correlation effects on the binding energy, as follows: When the ligand has π and $n\pi$ orbitals at a high energy level and a strong π -back bonding is formed in Ni(PH₃)₂L, electron correlation stabilizes the Ni-L interaction to a lesser extent than the free ligand molecule, which decreases the binding energy of the coordinate bond.³⁸ The η^2 -coordinate bond of NO_2^+ and CS_2 is expected to be such an example because they have the nonbonding π orbital as their HOMO, and a strong π -back-bond would be formed in their complexes. In ethylene, N_2 , and CO, on the other hand, electron correlation would increase the binding energy because only the $\pi \rightarrow \pi^*$ excited configuration is important in these free molecules and π -back-bonding of these complexes is weaker than that in $Ni(PH₃)₂(\eta^2-CO₂)$. This kind of prediction would be useful in discussing the binding energy of large transition-metal complexes on which a CI calculation is difficult.

Acknowledgment. We gratefully acknowledge the Ministry of Education, Culture and Science for the Grand-in Aids for cooperative Research (No. 62303002) and the Computer Center, Institute for Molecular Science (IMS). This work was also supported by the Joint Studies Program (1988-1989) of IMS.

⁽³⁵⁾ Rohlfing, C. **M.;** Hay, **P. J.** *J. Chem. Phys.* **1985,** *83,* **4641.**

⁽³⁶⁾ (a) Hoffmann, **R.;** Chen, **M. M.-L.;** Thorn, **D. L.** *Inorg.* Chem. **1977,** *16,* **503.** (b) DuBois, D. L.; Hoffmann, R. *Now. J. Chim.* **1977,** *I,* **479.** (37) In the η^2 -side-on coordination of CO₂, HOMO mainly consists of bonding overlap between the Ni d_r and CO₂ π^* orbitals into which CO₂ *x* and n*x* exhibit antibonding mixing with Ni d_r. In spite of such antibonding mixing of CO₂ *x* and n*x*, **HOMO** is still strongly bonding, because of a strong back-bonding interaction from Ni $d\pi$ to CO_2 π [.]

⁽³⁸⁾ The CO₂ binding energy in Ni^IF(NH₃)₄(η ¹-CO₂) increases upon introducing correlation effects in spite of its strong back-bonding, unlike $Ni(PH₃)₂(\eta^2-CO₂)$, because coordinate bonding nature and electron correlation in this complex significantly differs from $Ni(PH₃)₂(n²-CO₂).$ Sakaki, S. To be published.